direct.config package

Contents

direct.config package#

Submodules#

direct.config.defaults module#

class direct.config.defaults.TensorboardConfig(num_images=8)[source]#

Bases: BaseConfig

num_images = 8#
__init__(num_images=8)#
class direct.config.defaults.LoggingConfig(log_as_image=None, tensorboard=<factory>)[source]#

Bases: BaseConfig

log_as_image = None#
tensorboard#
__init__(log_as_image=None, tensorboard=<factory>)#
class direct.config.defaults.FunctionConfig(function='???', multiplier=1.0)[source]#

Bases: BaseConfig

function = '???'#
multiplier = 1.0#
__init__(function='???', multiplier=1.0)#
class direct.config.defaults.CheckpointerConfig(checkpoint_steps=500)[source]#

Bases: BaseConfig

checkpoint_steps = 500#
__init__(checkpoint_steps=500)#
class direct.config.defaults.LossConfig(crop=None, losses=<factory>)[source]#

Bases: BaseConfig

crop = None#
losses#
__init__(crop=None, losses=<factory>)#
class direct.config.defaults.TrainingConfig(datasets=<factory>, model_checkpoint=None, optimizer='Adam', lr=0.0005, weight_decay=1e-06, batch_size=2, lr_step_size=5000, lr_gamma=0.5, lr_warmup_iter=500, swa_start_iter=None, num_iterations=50000, validation_steps=1000, gradient_steps=1, gradient_clipping=0.0, gradient_debug=False, loss=<factory>, checkpointer=<factory>, metrics=<factory>, regularizers=<factory>)[source]#

Bases: BaseConfig

datasets#
model_checkpoint = None#
optimizer = 'Adam'#
lr = 0.0005#
weight_decay = 1e-06#
batch_size = 2#
lr_step_size = 5000#
lr_gamma = 0.5#
lr_warmup_iter = 500#
swa_start_iter = None#
num_iterations = 50000#
validation_steps = 1000#
gradient_steps = 1#
gradient_clipping = 0.0#
gradient_debug = False#
loss#
checkpointer#
metrics#
regularizers#
__init__(datasets=<factory>, model_checkpoint=None, optimizer='Adam', lr=0.0005, weight_decay=1e-06, batch_size=2, lr_step_size=5000, lr_gamma=0.5, lr_warmup_iter=500, swa_start_iter=None, num_iterations=50000, validation_steps=1000, gradient_steps=1, gradient_clipping=0.0, gradient_debug=False, loss=<factory>, checkpointer=<factory>, metrics=<factory>, regularizers=<factory>)#
class direct.config.defaults.ValidationConfig(datasets=<factory>, batch_size=8, metrics=<factory>, regularizers=<factory>, crop='training')[source]#

Bases: BaseConfig

datasets#
batch_size = 8#
metrics#
regularizers#
crop = 'training'#
__init__(datasets=<factory>, batch_size=8, metrics=<factory>, regularizers=<factory>, crop='training')#
class direct.config.defaults.InferenceConfig(dataset=<factory>, batch_size=1, crop=None)[source]#

Bases: BaseConfig

dataset#
batch_size = 1#
crop = None#
__init__(dataset=<factory>, batch_size=1, crop=None)#
class direct.config.defaults.ModelConfig(model_name='???', engine_name=None)[source]#

Bases: BaseConfig

model_name = '???'#
engine_name = None#
__init__(model_name='???', engine_name=None)#
class direct.config.defaults.PhysicsConfig(forward_operator='fft2', backward_operator='ifft2', use_noise_matrix=False, noise_matrix_scaling=1.0)[source]#

Bases: BaseConfig

forward_operator = 'fft2'#
backward_operator = 'ifft2'#
use_noise_matrix = False#
noise_matrix_scaling = 1.0#
__init__(forward_operator='fft2', backward_operator='ifft2', use_noise_matrix=False, noise_matrix_scaling=1.0)#
class direct.config.defaults.DefaultConfig(model='???', additional_models=None, physics=<factory>, training=<factory>, validation=<factory>, inference=None, logging=<factory>)[source]#

Bases: BaseConfig

model = '???'#
additional_models = None#
physics#
training#
validation#
inference = None#
logging#
__init__(model='???', additional_models=None, physics=<factory>, training=<factory>, validation=<factory>, inference=None, logging=<factory>)#

Module contents#

class direct.config.BaseConfig[source]#

Bases: object

__init__()#