direct.nn.xpdnet package#
Submodules#
direct.nn.xpdnet.config module#
- class direct.nn.xpdnet.config.XPDNetConfig(model_name: str = '???', engine_name: str | None = None, num_primal: int = 5, num_dual: int = 1, num_iter: int = 10, use_primal_only: bool = True, kspace_model_architecture: str = 'CONV', dual_conv_hidden_channels: int = 16, dual_conv_n_convs: int = 4, dual_conv_batchnorm: bool = False, dual_didn_hidden_channels: int = 64, dual_didn_num_dubs: int = 6, dual_didn_num_convs_recon: int = 9, mwcnn_hidden_channels: int = 16, mwcnn_num_scales: int = 4, mwcnn_bias: bool = True, mwcnn_batchnorm: bool = False, normalize: bool = False)[source][source]#
Bases:
ModelConfig
-
dual_conv_batchnorm:
bool
= False#
-
dual_conv_n_convs:
int
= 4#
-
dual_didn_num_convs_recon:
int
= 9#
-
dual_didn_num_dubs:
int
= 6#
-
kspace_model_architecture:
str
= 'CONV'#
-
mwcnn_batchnorm:
bool
= False#
-
mwcnn_bias:
bool
= True#
-
mwcnn_num_scales:
int
= 4#
-
normalize:
bool
= False#
-
num_dual:
int
= 1#
-
num_iter:
int
= 10#
-
num_primal:
int
= 5#
-
use_primal_only:
bool
= True#
-
dual_conv_batchnorm:
direct.nn.xpdnet.xpdnet module#
- class direct.nn.xpdnet.xpdnet.XPDNet(forward_operator, backward_operator, num_primal=5, num_dual=1, num_iter=10, use_primal_only=True, image_model_architecture='MWCNN', kspace_model_architecture=None, normalize=False, **kwargs)[source][source]#
Bases:
CrossDomainNetwork
XPDNet as implemented in [1].
References
[1]Ramzi, Zaccharie, et al. “XPDNet for MRI Reconstruction: An Application to the 2020 FastMRI Challenge.” ArXiv:2010.07290 [Physics, Stat], July 2021. arXiv.org, http://arxiv.org/abs/2010.07290.
-
training:
bool
#
-
training:
direct.nn.xpdnet.xpdnet_engine module#
- class direct.nn.xpdnet.xpdnet_engine.XPDNetEngine(cfg, model, device, forward_operator=None, backward_operator=None, mixed_precision=False, **models)[source][source]#
Bases:
MRIModelEngine
XPDNet Engine.