direct.nn.conv package#
Submodules#
direct.nn.conv.conv module#
- class direct.nn.conv.conv.Conv2d(in_channels, out_channels, hidden_channels, n_convs=3, activation=nn.PReLU(), batchnorm=False)[source]#
Bases:
ModuleImplementation of a simple cascade of 2D convolutions.
If
batchnormis set toTrue, batch normalization layer is applied after each convolution.- __init__(in_channels, out_channels, hidden_channels, n_convs=3, activation=nn.PReLU(), batchnorm=False)[source]#
Inits
Conv2d.- Parameters:
in_channels (
int) – Number of input channels.out_channels (
int) – Number of output channels.hidden_channels (
int) – Number of hidden channels.n_convs (
int) – Number of convolutional layers. Default:3.activation (
Module) – Activation function. Default:nn.PReLU().batchnorm (
bool) – IfTruea batch normalization layer is applied after every convolution. Default:False.