direct.nn.jointicnet package#
Submodules#
direct.nn.jointicnet.config module#
- class direct.nn.jointicnet.config.JointICNetConfig(model_name: str = '???', engine_name: str | None = None, num_iter: int = 10, use_norm_unet: bool = False, image_unet_num_filters: int = 8, image_unet_num_pool_layers: int = 4, image_unet_dropout: float = 0.0, kspace_unet_num_filters: int = 8, kspace_unet_num_pool_layers: int = 4, kspace_unet_dropout: float = 0.0, sens_unet_num_filters: int = 8, sens_unet_num_pool_layers: int = 4, sens_unet_dropout: float = 0.0)[source][source]#
Bases:
ModelConfig
-
image_unet_dropout:
float
= 0.0#
-
image_unet_num_filters:
int
= 8#
-
image_unet_num_pool_layers:
int
= 4#
-
kspace_unet_dropout:
float
= 0.0#
-
kspace_unet_num_filters:
int
= 8#
-
kspace_unet_num_pool_layers:
int
= 4#
-
num_iter:
int
= 10#
-
sens_unet_dropout:
float
= 0.0#
-
sens_unet_num_filters:
int
= 8#
-
sens_unet_num_pool_layers:
int
= 4#
-
use_norm_unet:
bool
= False#
-
image_unet_dropout:
direct.nn.jointicnet.jointicnet module#
- class direct.nn.jointicnet.jointicnet.JointICNet(forward_operator, backward_operator, num_iter=10, use_norm_unet=False, **kwargs)[source][source]#
Bases:
Module
Joint Deep Model-Based MR Image and Coil Sensitivity Reconstruction Network (Joint-ICNet) implementation as presented in [1].
References
[1]Jun, Yohan, et al. “Joint Deep Model-Based MR Image and Coil Sensitivity Reconstruction Network (Joint-ICNet) for Fast MRI.” 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2021, pp. 5266–75. DOI.org (Crossref), https://doi.org/10.1109/CVPR46437.2021.00523.
- forward(masked_kspace, sampling_mask, sensitivity_map)[source][source]#
Computes forward pass of
JointICNet
.- Parameters:
- masked_kspace: torch.Tensor
Masked k-space of shape (N, coil, height, width, complex=2).
- sampling_mask: torch.Tensor
Sampling mask of shape (N, 1, height, width, 1).
- sensitivity_map: torch.Tensor
Sensitivity map of shape (N, coil, height, width, complex=2).
- Returns:
- out_image: torch.Tensor
Output image of shape (N, height, width, complex=2).
- Return type:
Tensor
-
training:
bool
#
direct.nn.jointicnet.jointicnet_engine module#
- class direct.nn.jointicnet.jointicnet_engine.JointICNetEngine(cfg, model, device, forward_operator=None, backward_operator=None, mixed_precision=False, **models)[source][source]#
Bases:
MRIModelEngine
Joint-ICNet Engine.