direct.nn.jointicnet package#
Submodules#
direct.nn.jointicnet.config module#
- class direct.nn.jointicnet.config.JointICNetConfig(model_name='???', engine_name=None, num_iter=10, use_norm_unet=False, image_unet_num_filters=8, image_unet_num_pool_layers=4, image_unet_dropout=0.0, kspace_unet_num_filters=8, kspace_unet_num_pool_layers=4, kspace_unet_dropout=0.0, sens_unet_num_filters=8, sens_unet_num_pool_layers=4, sens_unet_dropout=0.0)[source]#
Bases:
ModelConfig- num_iter = 10#
- use_norm_unet = False#
- image_unet_num_filters = 8#
- image_unet_num_pool_layers = 4#
- image_unet_dropout = 0.0#
- kspace_unet_num_filters = 8#
- kspace_unet_num_pool_layers = 4#
- kspace_unet_dropout = 0.0#
- sens_unet_num_filters = 8#
- sens_unet_num_pool_layers = 4#
- sens_unet_dropout = 0.0#
- __init__(model_name='???', engine_name=None, num_iter=10, use_norm_unet=False, image_unet_num_filters=8, image_unet_num_pool_layers=4, image_unet_dropout=0.0, kspace_unet_num_filters=8, kspace_unet_num_pool_layers=4, kspace_unet_dropout=0.0, sens_unet_num_filters=8, sens_unet_num_pool_layers=4, sens_unet_dropout=0.0)#
direct.nn.jointicnet.jointicnet module#
- class direct.nn.jointicnet.jointicnet.JointICNet(forward_operator, backward_operator, num_iter=10, use_norm_unet=False, **kwargs)[source]#
Bases:
ModuleJoint Deep Model-Based MR Image and Coil Sensitivity Reconstruction Network (Joint-ICNet) implementation as presented in [1]_.
References: .. [1] Jun, Yohan, et al. “Joint Deep Model-Based MR Image and Coil Sensitivity Reconstruction Network (Joint-ICNet) for Fast MRI.” 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2021, pp. 5266–75. DOI.org (Crossref), https://doi.org/10.1109/CVPR46437.2021.00523.
- __init__(forward_operator, backward_operator, num_iter=10, use_norm_unet=False, **kwargs)[source]#
Inits
JointICNet.- Parameters:
forward_operator (
Callable) – Forward Transform.backward_operator (
Callable) – Backward Transform.num_iter (
int) – Number of unrolled iterations. Default:10.use_norm_unet (
bool) – IfTrue, a Normalized U-Net is used. Default:False.**kwargs – Image, k-space and sensitivity-map U-Net models keyword-arguments.
- forward(masked_kspace, sampling_mask, sensitivity_map)[source]#
Computes forward pass of
JointICNet.- Parameters:
masked_kspace (
Tensor) – torch.Tensorshape (Sensitivity map of)
sampling_mask (
Tensor) – torch.Tensorshape
sensitivity_map (
Tensor) – torch.Tensorshape
- Returns:
torch.Tensor Output image of shape (N, height, width, complex=2).
- Return type:
out_image
direct.nn.jointicnet.jointicnet_engine module#
- class direct.nn.jointicnet.jointicnet_engine.JointICNetEngine(cfg, model, device, forward_operator=None, backward_operator=None, mixed_precision=False, **models)[source]#
Bases:
MRIModelEngineJoint-ICNet Engine.
- __init__(cfg, model, device, forward_operator=None, backward_operator=None, mixed_precision=False, **models)[source]#
Inits
JointICNetEngine.