direct.nn.mwcnn package#
Submodules#
direct.nn.mwcnn.mwcnn module#
- class direct.nn.mwcnn.mwcnn.ConvBlock(in_channels, out_channels, kernel_size, bias=True, batchnorm=False, activation=ReLU(inplace=True), scale=1.0)[source][source]#
Bases:
ModuleConvolution Block for
MWCNNas implemented in [1].References
[1]Liu, Pengju, et al. “Multi-Level Wavelet-CNN for Image Restoration.” ArXiv:1805.07071 [Cs], May 2018. arXiv.org, http://arxiv.org/abs/1805.07071.
- class direct.nn.mwcnn.mwcnn.DWT[source][source]#
Bases:
Module2D Discrete Wavelet Transform as implemented in [1].
References
[1]Liu, Pengju, et al. “Multi-Level Wavelet-CNN for Image Restoration.” ArXiv:1805.07071 [Cs], May 2018. arXiv.org, http://arxiv.org/abs/1805.07071.
- class direct.nn.mwcnn.mwcnn.DilatedConvBlock(in_channels, dilations, kernel_size, out_channels=None, bias=True, batchnorm=False, activation=ReLU(inplace=True), scale=1.0)[source][source]#
Bases:
ModuleDouble dilated Convolution Block fpr
MWCNNas implemented in [1].References
[1]Liu, Pengju, et al. “Multi-Level Wavelet-CNN for Image Restoration.” ArXiv:1805.07071 [Cs], May 2018. arXiv.org, http://arxiv.org/abs/1805.07071.
- forward(x)[source][source]#
Performs forward pass of
DilatedConvBlock.- Parameters:
- x: torch.Tensor
Input with shape (N, C, H, W).
- Returns:
- output: torch.Tensor
Output with shape (N, C’, H’, W’).
- Return type:
Tensor
- class direct.nn.mwcnn.mwcnn.IWT[source][source]#
Bases:
Module2D Inverse Wavelet Transform as implemented in [1].
References
[1]Liu, Pengju, et al. “Multi-Level Wavelet-CNN for Image Restoration.” ArXiv:1805.07071 [Cs], May 2018. arXiv.org, http://arxiv.org/abs/1805.07071.
- class direct.nn.mwcnn.mwcnn.MWCNN(input_channels, first_conv_hidden_channels, num_scales=4, bias=True, batchnorm=False, activation=ReLU(inplace=True))[source][source]#
Bases:
ModuleMulti-level Wavelet CNN (MWCNN) implementation as implemented in [1].
References
[1]Liu, Pengju, et al. “Multi-Level Wavelet-CNN for Image Restoration.” ArXiv:1805.07071 [Cs], May 2018. arXiv.org, http://arxiv.org/abs/1805.07071.